Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Rev ; 48(2)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38425054

ABSTRACT

Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.


Subject(s)
Microbiota , One Health , Animals , Humans , Biological Evolution , Soil Microbiology , Plants/microbiology
2.
Genet Sel Evol ; 56(1): 11, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321371

ABSTRACT

BACKGROUND: The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by comparing prior derived whole-genome sequence variants to an out-species group using a population-based likelihood ratio test. RESULTS: Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral alleles with those from previous studies when only high-probability ancestral alleles were considered (29.8 million positions) and another 23.5 million high-confidence ancestral alleles were novel, expanding the available reference list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to determine ancestral alleles is appropriate. CONCLUSIONS: Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined in this study including those not previously listed, particularly those with high-probability estimates, may be used for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level genotypes are available.


Subject(s)
Genome-Wide Association Study , Genomics , Cattle , Animals , Alleles , Likelihood Functions , Genotype , Genomics/methods , Polymorphism, Single Nucleotide
3.
PLoS One ; 18(1): e0279398, 2023.
Article in English | MEDLINE | ID: mdl-36701372

ABSTRACT

Worldwide, most beef breeding herds are naturally mated. As such, the ability to identify and select fertile bulls is critically important for both productivity and genetic improvement. Here, we collected ten fertility-related phenotypes for 6,063 bulls from six tropically adapted breeds. Phenotypes were comprised of four bull conformation traits and six traits directly related to the quality of the bull's semen. We also generated high-density DNA genotypes for all the animals. In total, 680,758 single nucleotide polymorphism (SNP) genotypes were analyzed. The genomic correlation of the same trait observed in different breeds was positive for scrotal circumference and sheath score on most breed comparisons, but close to zero for the percentage of normal sperm, suggesting a divergent genetic background for this trait. We confirmed the importance of a breed being present in the reference population to the generation of accurate genomic estimated breeding values (GEBV) in an across-breed validation scenario. Average GEBV accuracies varied from 0.19 to 0.44 when the breed was not included in the reference population. The range improved to 0.28 to 0.59 when the breed was in the reference population. Variants associated with the gene HDAC4, six genes from the spermatogenesis-associated (SPATA) family of proteins, and 29 transcription factors were identified as candidate genes. Collectively these results enable very early in-life selection for bull fertility traits, supporting genetic improvement strategies currently taking place within tropical beef production systems. This study also improves our understanding of the molecular basis of male fertility in mammals.


Subject(s)
Genome , Semen , Male , Cattle/genetics , Animals , Genome/genetics , Genomics/methods , Genotype , Phenotype , Fertility/genetics , Polymorphism, Single Nucleotide , Mammals/genetics
4.
BMC Genomics ; 23(1): 774, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434498

ABSTRACT

BACKGROUND: Potential functional variants (PFVs) can be defined as genetic variants responsible for a given phenotype. Ultimately, these are the best DNA markers for animal breeding and selection, especially for polygenic and complex phenotypes. Herein, we described the identification of PFVs for complex phenotypes (in this case, Feed Efficiency in beef cattle) using a systems-biology driven approach based on RNA-seq data from physiologically relevant organs. RESULTS: The systems-biology coupled with deep molecular phenotyping by RNA-seq of liver, muscle, hypothalamus, pituitary, and adrenal glands of animals with high and low feed efficiency (FE) measured by residual feed intake (RFI) identified 2,000,936 uniquely variants. Among them, 9986 variants were significantly associated with FE and only 78 had a high impact on protein expression and were considered as PFVs. A set of 169 significant uniquely variants were expressed in all five organs, however, only 27 variants had a moderate impact and none of them a had high impact on protein expression. These results provide evidence of tissue-specific effects of high-impact PFVs. The PFVs were enriched (FDR < 0.05) for processing and presentation of MHC Class I and II mediated antigens, which are an important part of the adaptive immune response. The experimental validation of these PFVs was demonstrated by the increased prediction accuracy for RFI using the weighted G matrix (ssGBLUP+wG; Acc = 0.10 and b = 0.48) obtained in the ssGWAS in comparison to the unweighted G matrix (ssGBLUP; Acc = 0.29 and b = 1.10). CONCLUSION: Here we identified PFVs for FE in beef cattle using a strategy based on systems-biology and deep molecular phenotyping. This approach has great potential to be used in genetic prediction programs, especially for polygenic phenotypes.


Subject(s)
Animal Feed , Eating , Animals , Cattle/genetics , Eating/genetics , Systems Biology , Genetic Markers , Phenotype
5.
Dev Comp Immunol ; 132: 104396, 2022 07.
Article in English | MEDLINE | ID: mdl-35304180

ABSTRACT

One of the most intriguing discoveries of the genomic era is that only a small fraction of the genome is dedicated to protein coding. The remaining fraction of the genome contains, amongst other elements, a number of non-coding transcripts that regulate the transcription of protein coding genes. Here we used transcriptome sequencing data to explore these gene regulatory networks using RNA derived from gill tissue of Atlantic salmon (Salmo salar) infected with Pilchard orthomyxovirus (POMV), but showing no clinical signs of disease. We examined fish sampled early during the challenge trial (8-12 days after infection) to uncover potential biomarkers of early infection and innate immunity, and fish sampled late during the challenge trial (19 dpi) to elucidate potential markers of resistance to POMV. We analysed total RNA-sequencing data to find differentially expressed messenger RNAs (mRNA) and identify new long-noncoding RNAs (lncRNAs). We also evaluated small RNA sequencing data to find differentially transcribed microRNAs (miRNAs) and explore their role in gene regulatory networks. Whole-genome expression data (both coding and non-coding transcripts) were used to explore the crosstalk between RNA molecules by constructing competing endogenous RNA networks (ceRNA). The teleost specific miR-462/miR-731 cluster was strongly induced in POMV infected fish and deemed a potential biomarker of early infection. Gene networks also identified a selenoprotein (selja), downregulated in fish sampled late during the challenge, which may be associated to viral clearance and the return to homeostasis after infection. This study provides the basis for further investigations using molecular tools to overexpress or inhibit miRNAs to confirm the functional impact of the interactions presented here on gene expression and their potential application at commercial level.


Subject(s)
MicroRNAs , Orthomyxoviridae , RNA, Long Noncoding , Salmo salar , Animals , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Salmo salar/genetics , Salmo salar/metabolism , Transcriptome
7.
Anim Microbiome ; 3(1): 74, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689834

ABSTRACT

BACKGROUND: The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. RESULTS: To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. CONCLUSIONS: Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.

8.
Genet Sel Evol ; 53(1): 77, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34565347

ABSTRACT

BACKGROUND: Improving feedlot performance, carcase weight and quality is a primary goal of the beef industry worldwide. Here, we used data from 3408 Australian Angus steers from seven years of birth (YOB) cohorts (2011-2017) with a minimal level of sire linkage and that were genotyped for 45,152 SNPs. Phenotypic records included two feedlot and five carcase traits, namely average daily gain (ADG), average daily dry matter intake (DMI), carcase weight (CWT), carcase eye muscle area (EMA), carcase Meat Standard Australia marbling score (MBL), carcase ossification score (OSS) and carcase subcutaneous rib fat depth (RIB). Using a 7-way cross-validation based on YOB cohorts, we tested the quality of genomic predictions using the linear regression (LR) method compared to the traditional method (Pearson's correlation between the genomic estimated breeding value (GEBV) and its associated adjusted phenotype divided by the square root of heritability); explored the factors, such as heritability, validation cohort, and phenotype that affect estimates of accuracy, bias, and dispersion calculated with the LR method; and suggested a novel interpretation for translating differences in accuracy into phenotypic differences, based on GEBV quartiles (Q1Q4). RESULTS: Heritability (h2) estimates were generally moderate to high (from 0.29 for ADG to 0.53 for CWT). We found a strong correlation (0.73, P-value < 0.001) between accuracies using the traditional method and those using the LR method, although the LR method was less affected by random variation within and across years and showed a better ability to discriminate between extreme GEBV quartiles. We confirmed that bias of GEBV was not significantly affected by h2, validation cohort or trait. Similarly, validation cohort was not a significant source of variation for any of the GEBV quality metrics. Finally, we observed that the phenotypic differences were larger for higher accuracies. CONCLUSIONS: Our estimates of h2 and GEBV quality metrics suggest a potential for accurate genomic selection of Australian Angus for feedlot performance and carcase traits. In addition, the Q1Q4 measure presented here easily translates into possible gains of genomic selection in terms of phenotypic differences and thus provides a more tangible output for commercial beef cattle producers.


Subject(s)
Cattle/anatomy & histology , Cattle/genetics , Genome/genetics , Genomics , Phenotype , Animals , Australia , Genotype , Male , Polymorphism, Single Nucleotide
9.
Genome Biol ; 22(1): 273, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548076

ABSTRACT

BACKGROUND: Spatiotemporal changes in the chromatin accessibility landscape are essential to cell differentiation, development, health, and disease. The quest of identifying regulatory elements in open chromatin regions across different tissues and developmental stages is led by large international collaborative efforts mostly focusing on model organisms, such as ENCODE. Recently, the Functional Annotation of Animal Genomes (FAANG) has been established to unravel the regulatory elements in non-model organisms, including cattle. Now, we can transition from prediction to validation by experimentally identifying the regulatory elements in tropical indicine cattle. The identification of regulatory elements, their annotation and comparison with the taurine counterpart, holds high promise to link regulatory regions to adaptability traits and improve animal productivity and welfare. RESULTS: We generate open chromatin profiles for liver, muscle, and hypothalamus of indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif enrichment and transcription factor binding sites, we identify potential master regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and SOX factors, respectively. Integration with transcriptomic data allows us to confirm some of their target genes. Finally, by comparing our results with Bos taurus data we identify potential indicine-specific open chromatin regions and overlaps with indicine selective sweeps. CONCLUSIONS: Our findings provide insights into the identification and analysis of regulatory elements in non-model organisms, the evolution of regulatory elements within two cattle subspecies as well as having an immediate impact on the animal genetics community in particular for a relevant productive species such as tropical cattle.


Subject(s)
Cattle/genetics , Chromatin/metabolism , Regulatory Elements, Transcriptional , Animals , Binding Sites , Cattle/metabolism , Genome , Hepatocyte Nuclear Factors/metabolism , High-Throughput Nucleotide Sequencing , Humans , Nucleotide Motifs , Position-Specific Scoring Matrices , Transcription Factors/metabolism
10.
Front Genet ; 12: 619857, 2021.
Article in English | MEDLINE | ID: mdl-33664767

ABSTRACT

Machine learning (ML) methods have shown promising results in identifying genes when applied to large transcriptome datasets. However, no attempt has been made to compare the performance of combining different ML methods together in the prediction of high feed efficiency (HFE) and low feed efficiency (LFE) animals. In this study, using RNA sequencing data of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle, and pituitary) from nine HFE and nine LFE Nellore bulls, we evaluated the prediction accuracies of five analytical methods in classifying FE animals. These included two conventional methods for differential gene expression (DGE) analysis (t-test and edgeR) as benchmarks, and three ML methods: Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and combination of both RF and XGBoost (RX). Utility of a subset of candidate genes selected from each method for classification of FE animals was assessed by support vector machine (SVM). Among all methods, the smallest subsets of genes (117) identified by RX outperformed those chosen by t-test, edgeR, RF, or XGBoost in classification accuracy of animals. Gene co-expression network analysis confirmed the interactivity existing among these genes and their relevance within the network related to their prediction ranking based on ML. The results demonstrate a great potential for applying a combination of ML methods to large transcriptome datasets to identify biologically important genes for accurately classifying FE animals.

11.
Microbiome ; 9(1): 52, 2021 02 21.
Article in English | MEDLINE | ID: mdl-33612109

ABSTRACT

BACKGROUND: Analyses of gut microbiome composition in livestock species have shown its potential to contribute to the regulation of complex phenotypes. However, little is known about the host genetic control over the gut microbial communities. In pigs, previous studies are based on classical "single-gene-single-trait" approaches and have evaluated the role of host genome controlling gut prokaryote and eukaryote communities separately. RESULTS: In order to determine the ability of the host genome to control the diversity and composition of microbial communities in healthy pigs, we undertook genome-wide association studies (GWAS) for 39 microbial phenotypes that included 2 diversity indexes, and the relative abundance of 31 bacterial and six commensal protist genera in 390 pigs genotyped for 70 K SNPs. The GWAS results were processed through a 3-step analytical pipeline comprised of (1) association weight matrix; (2) regulatory impact factor; and (3) partial correlation and information theory. The inferred gene regulatory network comprised 3561 genes (within a 5 kb distance from a relevant SNP-P < 0.05) and 738,913 connections (SNP-to-SNP co-associations). Our findings highlight the complexity and polygenic nature of the pig gut microbial ecosystem. Prominent within the network were 5 regulators, PRDM15, STAT1, ssc-mir-371, SOX9 and RUNX2 which gathered 942, 607, 588, 284 and 273 connections, respectively. PRDM15 modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency and regulates the production of Th1- and Th2-type immune response. The signal transducer STAT1 has long been associated with immune processes and was recently identified as a potential regulator of vaccine response to porcine reproductive and respiratory syndrome. The list of regulators was enriched for immune-related pathways, and the list of predicted targets includes candidate genes previously reported as associated with microbiota profile in pigs, mice and human, such as SLIT3, SLC39A8, NOS1, IL1R2, DAB1, TOX3, SPP1, THSD7B, ELF2, PIANP, A2ML1, and IFNAR1. Moreover, we show the existence of host-genetic variants jointly associated with the relative abundance of butyrate producer bacteria and host performance. CONCLUSIONS: Taken together, our results identified regulators, candidate genes, and mechanisms linked with microbiome modulation by the host. They further highlight the value of the proposed analytical pipeline to exploit pleiotropy and the crosstalk between bacteria and protists as significant contributors to host-microbiome interactions and identify genetic markers and candidate genes that can be incorporated in breeding program to improve host-performance and microbial traits. Video Abstract.


Subject(s)
Gastrointestinal Microbiome/genetics , Gene Regulatory Networks , Swine/genetics , Swine/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Female , Genome-Wide Association Study , Male , Swine/classification , Symbiosis/genetics
12.
J Anim Sci ; 98(11)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33057688

ABSTRACT

Genomic tools to better define breed composition in agriculturally important species have sparked scientific and commercial industry interest. Knowledge of breed composition can inform multiple scientifically important decisions of industry application including DNA marker-assisted selection, identification of signatures of selection, and inference of product provenance to improve supply chain integrity. Genomic tools are expensive but can be economized by deploying a relatively small number of highly informative single-nucleotide polymorphisms (SNP) scattered evenly across the genome. Using resources from the 1000 Bull Genomes Project we established calibration (more stringent quality criteria; N = 1,243 cattle) and validation (less stringent; N = 864) data sets representing 17 breeds derived from both taurine and indicine bovine subspecies. Fifteen successively smaller panels (from 500,000 to 50 SNP) were built from those SNP in the calibration data that increasingly satisfied 2 criteria, high differential allele frequencies across the breeds as measured by average Euclidean distance (AED) and high uniformity (even spacing) across the physical genome. Those SNP awarded the highest AED were in or near genes previously identified as important signatures of selection in cattle such as LCORL, NCAPG, KITLG, and PLAG1. For each panel, the genomic breed composition (GBC) of each animal in the validation dataset was estimated using a linear regression model. A systematic exploration of the predictive accuracy of the various sized panels was then undertaken on the validation population using 3 benchmarking approaches: (1) % error (expressed relative to the estimated GBC made from over 1 million SNP), (2) % breed misassignment (expressed relative to each individual's breed recorded), and (3) Shannon's entropy of estimated GBC across the 17 target breeds. Our analyses suggest that a panel of just 250 SNP represents an adequate balance between accuracy and cost-only modest gains in accuracy are made as one increases panel density beyond this point.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Gene Frequency , Genomics , Genotype , Male
13.
Genes (Basel) ; 11(10)2020 10 20.
Article in English | MEDLINE | ID: mdl-33092259

ABSTRACT

Genome-wide gene expression analysis are routinely used to gain a systems-level understanding of complex processes, including network connectivity. Network connectivity tends to be built on a small subset of extremely high co-expression signals that are deemed significant, but this overlooks the vast majority of pairwise signals. Here, we developed a computational pipeline to assign to every gene its pair-wise genome-wide co-expression distribution to one of 8 template distributions shapes varying between unimodal, bimodal, skewed, or symmetrical, representing different proportions of positive and negative correlations. We then used a hypergeometric test to determine if specific genes (regulators versus non-regulators) and properties (differentially expressed or not) are associated with a particular distribution shape. We applied our methodology to five publicly available RNA sequencing (RNA-seq) datasets from four organisms in different physiological conditions and tissues. Our results suggest that genes can be assigned consistently to pre-defined distribution shapes, regarding the enrichment of differential expression and regulatory genes, in situations involving contrasting phenotypes, time-series, or physiological baseline data. There is indeed a striking additional biological signal present in the genome-wide distribution of co-expression values which would be overlooked by currently adopted approaches. Our method can be applied to extract further information from transcriptomic data and help uncover the molecular mechanisms involved in the regulation of complex biological process and phenotypes.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Genome , Transcriptome , Animals , Cattle , Drosophila , Ducks , Gene Expression Profiling , Humans , Phenotype , Sequence Analysis, RNA
14.
Genes (Basel) ; 11(9)2020 08 25.
Article in English | MEDLINE | ID: mdl-32854445

ABSTRACT

Long non-coding RNA (lncRNA) can regulate several aspects of gene expression, being associated with complex phenotypes in humans and livestock species. In taurine beef cattle, recent evidence points to the involvement of lncRNA in feed efficiency (FE), a proxy for increased productivity and sustainability. Here, we hypothesized specific regulatory roles of lncRNA in FE of indicine cattle. Using RNA-Seq data from the liver, muscle, hypothalamus, pituitary gland and adrenal gland from Nellore bulls with divergent FE, we submitted new transcripts to a series of filters to confidently predict lncRNA. Then, we identified lncRNA that were differentially expressed (DE) and/or key regulators of FE. Finally, we explored lncRNA genomic location and interactions with miRNA and mRNA to infer potential function. We were able to identify 126 relevant lncRNA for FE in Bos indicus, some with high homology to previously identified lncRNA in Bos taurus and some possible specific regulators of FE in indicine cattle. Moreover, lncRNA identified here were linked to previously described mechanisms related to FE in hypothalamus-pituitary-adrenal axis and are expected to help elucidate this complex phenotype. This study contributes to expanding the catalogue of lncRNA, particularly in indicine cattle, and identifies candidates for further studies in animal selection and management.


Subject(s)
Gene Expression Regulation/genetics , RNA, Long Noncoding/genetics , Animals , Cattle , Genome/genetics , Genomics/methods , MicroRNAs/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics
15.
Front Genet ; 11: 517, 2020.
Article in English | MEDLINE | ID: mdl-32528531

ABSTRACT

Co-expression networks tightly coordinate the spatiotemporal patterns of gene expression unfolding during development. Due to the dynamic nature of developmental processes simply overlaying gene expression patterns onto static representations of co-expression networks may be misleading. Here, we aim to formally quantitate topological changes of co-expression networks during embryonic development using a publicly available Drosophila melanogaster transcriptome data set comprising 14 time points. We deployed a network approach which inferred 10 discrete co-expression networks by smoothly sliding along from early to late development using 5 consecutive time points per window. Such an approach allows changing network structure, including the presence of hubs, modules and other topological parameters to be quantitated. To explore the dynamic aspects of gene expression captured by our approach, we focused on regulator genes with apparent influence over particular aspects of development. Those key regulators were selected using a differential network algorithm to contrast the first 7 (early) with the last 7 (late) developmental time points. This assigns high scores to genes whose connectivity to abundant differentially expressed target genes has changed dramatically between states. We have produced a list of key regulators - some increasing (e.g., Tusp, slbo, Sidpn, DCAF12, and chinmo) and some decreasing (Rfx, bap, Hmx, Awh, and mld) connectivity during development - which reflects their role in different stages of embryogenesis. The networks we have constructed can be explored and interpreted within Cytoscape software and provide a new systems biology approach for the Drosophila research community to better visualize and interpret developmental regulation of gene expression.

16.
J Anim Sci ; 98(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32428206

ABSTRACT

In this study, we aimed to assess the value of genotyping DNA pools as a strategy to generate accurate and cost-effective genomic estimated breeding values (GEBV) of sires in multi-sire mating systems. In order to do that, we used phenotypic records of 2,436 Australian Angus cattle from 174 sires, including yearling weight (YWT; N = 1,589 records), coat score (COAT; N = 2,026 records), and Meat Standards Australia marbling score (MARB; N = 1,304 records). Phenotypes were adjusted for fixed effects and age at measurement and pools of 2, 5, 10, 15, 20, and 25 animals were explored. Pools were created either by phenotype or at random. When pools were created at random, 10 replicates were examined to provide a measure of sampling variation. The relative accuracy of each pooling strategy was measured by the Pearson correlation coefficient between the sire's GEBV with pooled progeny and the GEBV using individually genotyped progeny. Random pools allow the computation of sire GEBV that are, on average, moderately correlated (i.e., r > 0.5 at pool sizes [PS] ≤ 10) with those obtained without pooling. However, for pools assigned at random, the difference between the best and the worst relative accuracy obtained out of the 10 replicates was as high as 0.41 for YWT, 0.36 for COAT, and 0.61 for MARB. This uncertainty associated with the relative accuracy of GEBV makes randomly assigning animals to pools an unreliable approach. In contrast, pooling by phenotype allowed the estimation of sires' GEBV with a relative accuracy ≥ 0.9 at PS < 10 for all three phenotypes. Moreover, even with larger PS, the lowest relative accuracy obtained was 0.88 (YWT, PS = 20). In agreement with results using simulated data, we conclude that pooling by phenotype is a robust approach to implementing genomic evaluation using commercial herd data, and PS larger than 10 individuals can be considered.


Subject(s)
Breeding , Cattle/genetics , Genome , Genotype , Genotyping Techniques/standards , Animals , Australia , Body Composition/genetics , Cattle/classification , Computer Simulation , Female , Genomics/methods , Male , Reproducibility of Results
17.
Sci Rep ; 9(1): 17363, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31758045

ABSTRACT

Targeting self-renewal and tumorigenicity has been proposed as a potential strategy against cancer stem cells (CSCs). Epigenetic proteins are key modulators of gene expression and cancer development contributing to regulation and maintenance of self-renewal and tumorigenicity. Here, we have screened a small-molecule epigenetic inhibitor library using 3D in vitro models in order to determine potential epigenetic targets associated with self-renewal and tumorigenicity in Canine Mammary Cancer (CMC) cells. We identified inhibition of BET proteins as a promising strategy to inhibit CMC colonies and tumorspheres formation. Low doses of (+)-JQ1 were able to downregulate important genes associated to self-renewal pathways such as WNT, NOTCH, Hedgehog, PI3K/AKT/mTOR, EGF receptor and FGF receptor in CMC tumorspheres. In addition, we observed downregulation of ZEB2, a transcription factor important for the maintenance of self-renewal in canine mammary cancer cells. Furthermore, low doses of (+)-JQ1 were not cytotoxic in CMC cells cultured in 2D in vitro models but induced G2/M cell cycle arrest accompanied by upregulation of G2/M checkpoint-associated genes including BTG2 and CCNG2. Our work indicates the BET inhibition as a new strategy for canine mammary cancers by modulating the self-renewal phenotype in tumorigenic cells such as CSCs.


Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Dog Diseases/genetics , Epigenesis, Genetic , Mammary Neoplasms, Animal/genetics , Transcription Factors/genetics , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Biomarkers, Tumor/genetics , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Dog Diseases/pathology , Dogs , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genetic Testing/methods , Indazoles/pharmacology , Mammary Neoplasms, Animal/pathology , Multigene Family/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/physiology , Pyridones/pharmacology , Triazoles/pharmacology
18.
J Anim Sci ; 97(12): 4761-4769, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31710679

ABSTRACT

The growing concern with the environment is making important for livestock producers to focus on selection for efficiency-related traits, which is a challenge for commercial cattle herds due to the lack of pedigree information. To explore a cost-effective opportunity for genomic evaluations of commercial herds, this study compared the accuracy of bulls' genomic estimated breeding values (GEBV) using different pooled genotype strategies. We used ten replicates of previously simulated genomic and phenotypic data for one low (t1) and one moderate (t2) heritability trait of 200 sires and 2,200 progeny. Sire's GEBV were calculated using a univariate mixed model, with a hybrid genomic relationship matrix (h-GRM) relating sires to: 1) 1,100 pools of 2 animals; 2) 440 pools of 5 animals; 3) 220 pools of 10 animals; 4) 110 pools of 20 animals; 5) 88 pools of 25 animals; 6) 44 pools of 50 animals; and 7) 22 pools of 100 animals. Pooling criteria were: at random, grouped sorting by t1, grouped sorting by t2, and grouped sorting by a combination of t1 and t2. The same criteria were used to select 110, 220, 440, and 1,100 individual genotypes for GEBV calculation to compare GEBV accuracy using the same number of individual genotypes and pools. Although the best accuracy was achieved for a given trait when pools were grouped based on that same trait (t1: 0.50-0.56, t2: 0.66-0.77), pooling by one trait impacted negatively on the accuracy of GEBV for the other trait (t1: 0.25-0.46, t2: 0.29-0.71). Therefore, the combined measure may be a feasible alternative to use the same pools to calculate GEBVs for both traits (t1: 0.45-0.57, t2: 0.62-0.76). Pools of 10 individuals were identified as representing a good compromise between loss of accuracy (~10%-15%) and cost savings (~90%) from genotype assays. In addition, we demonstrated that in more than 90% of the simulations, pools present higher sires' GEBV accuracy than individual genotypes when the number of genotype assays is limited (i.e., 110 or 220) and animals are assigned to pools based on phenotype. Pools assigned at random presented the poorest results (t1: 0.07-0.45, t2: 0.14-0.70). In conclusion, pooling by phenotype is the best approach to implementing genomic evaluation using commercial herd data, particularly when pools of 10 individuals are evaluated. While combining phenotypes seems a promising strategy to allow more flexibility to the estimates made using pools, more studies are necessary in this regard.


Subject(s)
Cattle/genetics , Genomics/methods , Genotype , Algorithms , Animals , Breeding , Female , Genetic Variation , Male
19.
PLoS One ; 14(6): e0217343, 2019.
Article in English | MEDLINE | ID: mdl-31216299

ABSTRACT

Mast cell tumours (MCTs) are common neoplasms in dogs and are usually regarded as potentially malignant. Several studies have attempted to identify biomarkers to better predict biological behaviours for this tumour. The aim of this study was to identify pathways connected to clinical and histopathological malignancies, shorter survival times, and poor prognoses associated with MCTs. We performed genome-wide gene expression analyses on tissues obtained from 15 dogs with single MCTs, and identified two distinct tumour subtypes-high-risk and low-risk-associated with differences in histological grades, survival times, Ki67 indices, and occurrence of death due the disease. Comparative analyses of RNA sequence profiles revealed 71 genes that were differentially expressed between high- and low-risk MCTs. In addition to these analyses, we also examined gene co-expression networks to explore the biological functions of the identified genes. The network construction revealed 63 gene modules, of which 4 were significantly associated with the more aggressive tumour group. Two of the gene modules positively correlated with high-risk MCTs were also associated with cell proliferation and extracellular matrix-related terms. At the top of the extracellular matrix module category, genes with functions directly related to those of cancer-associated fibroblasts (CAFs) were identified. Immunohistochemical analyses also revealed a greater number of CAFs in high-risk MCTs. This study provides a method for the molecular characterisation of canine MCTs into two distinct subtypes. Our data indicate that proliferation pathways are significantly involved in malignant tumour behaviours, which are known to be relevant for the induction and maintenance of MCTs. Finally, animals presenting high-risk MCTs overexpress genes associated with the extracellular matrix that can be robustly linked to CAF functions. We suggest that CAFs in the MCT stroma contribute to cancer progression.


Subject(s)
Dog Diseases , Extracellular Matrix , Gene Expression Regulation, Neoplastic , Mastocytoma , Neoplasm Proteins/biosynthesis , Skin Neoplasms , Animals , Dog Diseases/metabolism , Dog Diseases/pathology , Dogs , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Male , Mastocytoma/metabolism , Mastocytoma/pathology , Mastocytoma/veterinary , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/veterinary
20.
Front Genet ; 10: 230, 2019.
Article in English | MEDLINE | ID: mdl-30967894

ABSTRACT

Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...